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Abstract—The radiative transfer theory has been applied to calculate multiple light scattering
by ensembles of randomly distributed, perfectly aligned, polydisperse, infinite Mie cylinders
illuminated perpendicularly to their axes. An efficient method for computing the single-
scattering Stokes matrix for polydispersions of Mie cylinders is described. The albedo problem
for a homogeneous half-space of scatterers is considered. Illustrative numerical results for the
backscattering coefficients are computed for polydispersions of cylinders with different
refractive indices. An application to the problem of weak localization of photons is given.
Specifically, enhanced backscattering of light by two-dimensional, discrete, disordered media
is considered and backscattering enhancement factors in exactly the backscattering direction
are computed for a number of scattering models.

1. INTRODUCTION

In recent years, there has been growing interest in multiple scattering of electromagnetic waves by
two-dimensional, discrete media composed of infinitely long, perfectly aligned cylinders illuminated
perpendicularly to their axes (see, e.g., Refs. 1-9 and references therein). In this case, the general
vector problem is easily decomposed into a number of scalar subproblems, which makes its solution
rather simple and transparent.

If the cylinders are randomly distributed and independently scattering and the ladder approxi-
mation of the Bethe-Salpeter equation is used, then the multiple scattering of light can be described
by an appropriate radiative transfer equation. This equation was first formulated in Refs. 3 and 4.
Subsequently, in Refs. 3-5, classical methods of radiative transfer theory'®'* were used to study
analytical solutions of this equation extensively, and some numerical results were reported for the
simplest case of Rayleigh scattering (radii of the cylinders are much smaller than the wavelength).

The purpose of the present paper is to consider a more general type of scattering, namely,
scattering by polydispersions of circular cylinders with radii comparable to the wavelength
(hereafter Mie cylinders) and to produce some illustrative numerical results. In Sec. 2, basic
definitions and equations are briefly introduced. In Sec. 3, we describe an efficient analytical method
for computing the elements of the size-averaged single-scattering Stokes matrix, which must be
determined before the radiative transfer equation is solved numerically. In this method, the
elements of the scattering matrix are expanded in Fourier series and the corresponding expansion
coefficients are expressed directly in the coefficients that appear in the Mie series for cylinders.'*!®
We average over sizes the expansion coefficients rather than the elements of the scattering matrix,
which is advantageous in numerical calculations if the elements of the scattering matrix have to
be computed for a great number of scattering angles. In other words, our method is an application
of the idea by Domke's and Bugaenko,” which was first used to solve the Mie problem for
polydispersions of spheres. In Sec. 4, we consider the albedo problem for homogeneous semi-
infinite media. To compute the Stokes parameters of the reflected light, we solve numerically
Ambartsumian’s'® nonlinear integral equation for the reflection matrix. Illustrative numerical
results for the backscattering coefficients are computed for polydispersions of cylinders with
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different refractive indices. These numerical data are compared with analogous computations for
very thin (Rayleigh) cylinders. Finally, in Sec. 5, an application to the problem of weak localization
of photons is given. Specifically, enhanced backscattering of light by 2-D discrete disordered media
is considered and backscattering enhancement factors in exactly the backscattering direction are
computed for a number of scattering models.

2. BASIC DEFINITIONS AND EQUATIONS

We consider multiple light scattering in a plane-parallel medium composed of perfectly aligned,
randomly distributed, infinite, circular cylinders. The medium is illuminated by a parallel beam of
light, which is incident perpendicularly to the cylinder axes. This multiple-scattering problem is
essentially 2-D, because the unit vector i that specifies the direction of the multiply-scattered light
always lies in the plane perpendicular to the cylinder axes.

To describe the scattering of light, we use the cylindrical polar coordinate system that is shown
in Fig. 1. The X-axis is directed towards the inward normal to the upper boundary of the medium
and the plane XOY is perpendicular to the cylinder axes. Thus, the Z-axis is parallel to the cylinder
axes and is directed out of the paper. The plane YOZ coincides with the upper boundary of the
medium. The direction of light propagation fi is specified by the azimuth angle ¢. We use the Stokes
parameters that are defined by

I, =(E.E?), M
L=(E,E3), @
U =2Re(E.E}>, ?3)
V =—2Im(E,E}), @)

where the asterisk denotes the conjugate complex value, the angle brackets denote the ensemble
average, and E, and E, are the components of the electric field

E=Eé, +E,é,. ©)

Here, €, and é, are the corresponding unit vectors. The Stokes vector is defined as a (4 x 1) column
which has the Stokes parameters as its components as follows:

I={Il912’ U’ V}=[I|,12, U, V]T= (6)

where T denotes matrix transpose. An external parallel beam of light is incident perpendicularly
to the cylinder axes and is specified by the angle of incidence ¢, and the Stokes vector I°.
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Fig. 1. Geometry of light scattering.
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As is well known (see, e.g., Ref. 19 and references therein), the Bethe-Salpeter equation under
the ladder approximation of uncorrelated, independent scatterers results in the common vector
radiative transfer equation.'®® For the 2-D medium considered, this equation has the form**

dI(x; 2n
0s ¢ (;qu)) = —P(X)K(x)l(x;¢)+p(x)ﬁ do’ Z(x; ¢ — o)(x; 9"), 0

where I(x; ¢) is the Stokes vector of the multiply-scattered light, p(x) the concentration of the
cylinders in the plane perpendicular to the cylinder axes, K(x) the extinction matrix, and Z(x; ¢)
the scattering (or phase) matrix.

The elements of the matrices K and Z can be expressed in terms of the elements of the amplitude
scattering matrix. For a normally illuminated cylinder, the amplitude scattering matrix is

diagonal'*"® and
EY) a2 \" ikR[Tl(B) 0 E
[Ei]—e <nkR | o nollE @®

where R is the distance from the cylinder, k a free-space wavenumber, 6 the scattering angle, the
superscript s denotes the scattered field components, and the superscript i denotes the incident field
components. Throughout this paper, a time dependence of the form exp(—iwt?) is assumed and
suppressed. As a result, we have™*

2Re{T,(0)> 0 0 0
K _g 0 2Re{T,(0)> 0 0 )
“% 0 0 RCT, 0+ T30))  Im(Ty(0) = T,(0)) |
0 0 —IT,0)—T0) Re(T,(0)+ T,0))
AL 0 0 0
2 0 DO 0 0
ZO=% o 0 Re(T,O)T20))  Im(T,(O)TEO) | (10)
0 0 —ImKT,O)TIO) ReCT,(O)THO))

where the angle brackets denote the average over the cylinder radii.

3. SINGLE SCATTERING BY SIZE DISTRIBUTIONS OF MIE CYLINDERS

Before solving the radiative transfer equation (7) numerically, the elements of the scattering
matrix Z(6) must be calculated for a great number of scattering angles. In this section, we describe
an efficient analytical method for computing the elements of this matrix for a size distribution of
circular cylinders. The method is an application of an idea by Domke'® and Bugaenko,'” which was
used earlier to solve the Mie problem for polydisperse spherical particles.?'*

The elements of the amplitude scattering matrix are given by the Mie series'*'?
T\(0)= ) b,exp(ind), b_,=b,, 1n
T,(0)= Y a,exp(inf), a_,=a,, (12)

n= —oo
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where the Mie coefficients b, and a, depend on the refractive index N and size parameter x = kr
(r is the cylinder radius). We use the following similar trigonometric expansions for the elements
of the size-averaged scattering matrix:

1 & .
211(9)=ﬂcsca,l Z yiexp(il0), y_, =y, (13)
= -
1 d .
ZZZ (0) = ﬂ Csca.Z , Z Xy exP(llB), X_ 1= X, (14)

1 [eo]
Z33(0) + iZ54,(0) =5.C Y. zexp(ilf), z_,=z, (15)
l=—-wo
where C,,, and C,,, are the corresponding scattering cross sections given by'*
Car=2[Ta0Im@P=2 5 B (16
sca,l_nk o 1 _kn=_00 n ’
C -2 2”dOIT(G)Iz—i i la,l*> 17)
sca,Z_nk o 2 —k,,=_°0 an )
and the factor C is given by
2 2n 4 =
C=—| d0T,(0)T3(O) =7 . <b,a¥). (18)
nk |, k, =

It should be noted that y, =1, x,= 1, and z, = 1. By substituting the Mie series (11) and (12) into
Eq. (10) and using Egs. (13)—(15), we easily express the expansion coefficients y,, x;, and z, directly
in terms of the Mie coefficients b, and a,, viz.

4 ©

= *
yl kcsca‘ln=z_w<bnbn—l>9 (19)
25 aary (20)
XI_szca,zn=—ao anan—[ 5

_i i <bya*. > 1)
ZI_kC,,=_°o nan—l .

The expansions (19)—(21) are very useful in numerical computations for size distributions of
cylinders, because one may average over sizes the expansion coefficients y,, x;, and z, rather than
the elements of the scattering matrix. Next, by using Egs. (13)—(15), the elements of the scattering
matrix can be computed for a great number of scattering angles with a minimum expense of
computer time.

In Tables 1 and 2, we give an example of using Egs. (13)—(21). The computations are reported
for a standard gamma distribution? of cylinder radii

n(r) = constant r =¥« exp[ —r /(rgVer )]s (22)

with 7, =0.3 um and v = 0.05. The refractive index is N = 1.32 and the free-space wavelength
is A =0.5 um. To compute the Mie coefficients, we used the subroutine BHCYL of Bohren and
Huffman.!' In Table 1, the size-averaged expansion coefficients y;, x,, and z, are given. In Table 2,
these expansion coefficients are used to compute the quantities

00) =272, (8)/Ccar» (23)
22(0) = 21Z5(0)/Cyca2» (24)
2(0) =27[Z3,(0) + iZ(9))/C. (25)
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Table 1. Expansion coefficients for the gamma distribution of Mie
cylinders with r.q= 0.3 um, vz=0.05, N =132, and 4 =0.5 um.

1 ¥, z, Re z, Inm z,
0 1.00000 1.00000 1.00000 0.00000
1 0.87838 0.91499 0.94422 0.83397
2 0.74158 0.76233 0.77212 0.63825
3 0.57714 0.58539 0.60449 0.68408
4 0.42615 0.42604 0.43833 0.53947
5 0.28685 0.28903 0.29841 0.52129
6 0.18093 0.18355 0.18607 0.37192
T 0.09743 0.10708 0.10547 0.27017
8 0.05195 0.05760 0.05512 0.15177
9 0.02188 0.02808 0.02547 0.08206
10 0.01014 0.01271 0.01128 0.03691
1 0.00341 0.00518 0.00430 0.01557
12 0.00142 0.00201 0.00166 0.00593
13 0.00039 0.000T70 0.00054 0.00204
14 0.00015 0.00024 0.00018 0.00069
15 0.00004 0.00007 0.00005 0.00020
16 0.00001 0.00002 0.00002 0.00006
17 0.00000 0.00001 0.00000 0.00002
18 0.00000 0.00000 0.00000 0.00000

Table 2. Normalized elements of the Stokes scattering matrix for the
gamma distribution of Mie cylinders with rgg=0.3pum, vg=0.05,

N =132 and A =0.5um.

e X4 X2 Re % Imy
0° 7.555T1 7.75004 T.89545 9.30877T
15° 5.21078 5.30087 5.43078 4.97432
30° 1.77713 1.83742 1.8655T 0.35665
45° 0.43256 0.49947 0.46713 0.16114
60° 0.20307 0.20212 0.19135 0.49893
75° 0.13816 0.10047 0.10258 0.39198
90° 0.09346 0.05367 0.05094 0.29892
105° 0.07128 0.03240 0.02220 0.27886
120° 0.06637 0.02228 0.00548 0.27818
135° 0.06503 0.01883 | -0.00656 0.26459
150° 0.05235 0.01962 | -0.0229 0.14844
165° 0.06516 0.02387 | -0.03604 | -0.14202
180° 0.09360 0.02792 | -0.03638 | -0.328T5
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All these quantities are normalized to unity as follows:

2 [11(0)
(1/27t)f 12(0)5d0 = 1. (26)
x(0)

In computing the averaged quantities by integrating over the size distribution, we split the
integration interval [0, 2] um into 10 subintervals, in each of which a 24-point Gauss quadrature
formula was used. Both the integration interval and the number of quadrature division points were
chosen to ensure an accuracy of 1 x 10~° of the computed expansion coefficients. The expansion
coeflicients were computed in 23 sec, and then 0.01 sec were required to compute the scattering
matrix for one scattering angle. In these computations, a computer ES 1061 was used. For
comparison, the common numerical method, which implies size averaging of the elements of the
scattering matrix themselves, required 4 sec for the computation of the Mie coefficients and then
0.7 sec to compute the elements of the scattering matrix for one scattering angle. Thus, our
analytical method is more efficient if the number of scattering angles, for which the scattering
matrix is computed, is greater than roughly 30. For example, to solve Eq. (34) numerically, we had
to compute the elements of the scattering matrix for 690 scattering angles, and our method was
roughly 16 times faster than the commonly used numerical method.

4. ELECTROMAGNETIC BACKSCATTERING BY A HOMOGENEOUS
HALF-SPACE OF INFINITE CYLINDERS

Let a plane-parallel medium be illuminated by a parallel beam of light with I° == {I9, I3, 0, 0}.
It follows from Egs. (7), (9), and (10) that the Stokes parameters U and V of the multiply-scattered
light are identically equal to zero, and the vector radiative transfer equation (7) is reduced to the
following system of two independent scalar equations:>*

dI(z;; wi(t) (" , , n .
cosrp—’( 5)_ —I(t; 0) +—’( 1) do’ x(t; 0 —0)(1;0), j=1,2, (27
dr; 2 ) _,

J

where
wj= Csca,j/Cexl,j’ J= 1’2 (28)

are the corresponding single scattering albedos, and
Tj= J dx’p(x,)cexl,j(x/)9 .] = 1’2 (29)
0

are the corresponding optical depths. Here, the extinction cross sections C,, and C,,, are
given by'!®

4 ©

Cext,l = ; Re Z <bn>’ (30)
4 ©

Cona= % Re ) <a,). (31

We now consider the light reflected by a homogeneous half-space of infinite cylinders. The
reflection coefficients p;(¢, ¢,) and the backscattering coefficients o,(¢,) are defined by

Pi(@, o) = I;(0; © — @)/[I} cos @], (32)

aj(‘PO) = pj(‘POs (pO) COS @, .] = 1’ 2’ (33)
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where ¢, € [—n/2, n/2] is the angle of incidence, ¢ €[—n/2, /2], and [;(0; = — @) are the Stokes
parameters of the reflected light. The reflection coefficients satisfy the nonlinear integral equation
(see Chap. 30 of Ref. 10 and Refs. 18 and 4)

w; cos @, [™?
pi(®, @) [cos @ + cos @y] = 3’ {x(qo + Qo+ 1) +—— J

- do’ xi(@ —0)pi(¢’, ©)
2

_7[/

cos(p n/z 7 r ’
+— f do’ pi(@, @ )xi(e’ — @)
2

—n/

cospcospy [ ., [ ., ,
+——2—°J do J do” p;(@, ¢")
n —n/2 —n2

X x(@" + 0" +1)pi(e”" (Po)}, j=12 (34)
and the symmetry relations*

pi(@, @) = pi(@y, ®) = pi(— 0, — @), j=1,2. (35)

Tosolve Eq. (34) numerically, we used the iterative scheme described in detail in Ref. 24 (see also Ref. 4).

Figure 2 shows illustrative computational data for the gamma distribution of cylinder radii with
res=0.3 um and v.g = 0.05. For comparison, analogous data are given in Fig. 3 for monodisperse
Rayleigh cylinders with r = 5 x 10~* um. The corresponding single-scattering albedos are given in
Table 3. We see that for the Rayleigh cylinders, o, > o, for all of the refractive indices and scattering
angles. At the same time, for the size distribution of Mie cylinders, o, is always greater than g,.
The difference between the coefficients o, and g, for the Rayleigh cylinders decreases with an
increase of absorption, while the difference for the Mie cylinders increases. It is also interesting to
note that absorbing Rayleigh cylinders give greater backscattering coefficients than absorbing Mie
cylinders with roughly the same single-scattering albedos. This fact can be easily understood as
follows. The functions y,(6) and x,(0) for the Mie cylinders have large forward-scattering peaks
and small backscattering peaks (see Table 2), while these functions for the Rayleigh cylinders have
identical forward-scattering and backscattering peaks. Therefore, the photons diffusely reflected by
the Mie cylinders have longer path lengths and undergo more scattering events than the photons
diffusely reflected by the Rayleigh cylinders. As a result, the number of photons that are absorbed
by the Mie cylinders is greater than the number of photons that are absorbed by Rayleigh cylinders
with the same single-scattering albedos.

Backscattering coefficient

(o] 10 20 30 40 50 60 70 80 90

Angle of incidence (degrees)

Fig. 2. Diffuse backscattering coefficients o, (——) and ¢, (——-) vs the angle of incidence ¢, for the gamma

distribution of Mie cylinders with rg= 0.3 um and v, = 0.05. The real part of the refractive index is

Re N = 1.32 and the free-space wavelength is A = 0.5 um. The upper curves refer to Im N = 0, the middle
curves refer to Im N =5 x 10~3, and the lower curves refer to Im N =5 x 1072,
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Backscattering coefficient

| | | | ] | 1 1 J
0o 10 20 30 40 50 60 70 80 90

Angle of incidence (degrees)

Fig. 3. The same as in Fig. 1, but for monodisperse Rayleigh cylinders with r = 5 x 10~*um, Re N = 1.32,
and A = 0.5 um. The upper curves refer to Im N = 0, the middle curves refer to Im N =1 x 107, and the
lower curves refer to ImN =1 x 1076,

5. AN APPLICATION TO THE PROBLEM OF WEAK LOCALIZATION
OF PHOTONS

Radiative transfer theory is widely used to calculate multiple scattering of light in discrete
random media. Nevertheless, as was mentioned above, this theory is based on the ladder
approximation of the Bethe-Salpeter equation and, therefore, cannot explain an interesting
phenomenon, namely, enhanced backscattering of light from discrete disordered media (for recent
reviews, see, e.g., Refs. 25 and 26). This phenomenon is associated with the so-called weak
localization of photons and manifests itself as a well-defined narrow peak in the angular
distribution of the intensity of the reflected light at scattering angles near 180°, which is
superimposed on the diffusely reflected background intensity. This peak arises because a wave
scattered through a certain multiple scattering path can interfere with the wave scattered through
the time-reversed path, the interference being constructive in the backscattering direction.

The scalar theory of the enhanced backscattering from 3-D discrete random media is basically
well understood (see, e.g., Refs. 27 and 28). While the diffusely-scattered background intensity
comes from the sum of ladder diagrams, the coherent backscattering peak mainly comes from the
sum of cyclical (or maximally crossed) diagrams (for terminology, see Refs. 29 and 30). A
fundamental result of the scalar theory is that in exactly the backscattering direction, the
contribution of all the cyclical diagrams to the backscattered intensity is identical to that of all the
ladder diagrams of orders n > 2.7 Therefore, the full backscattering coefficient y is given by

y=y'+y 4+ ="+ 295 (36)

Table 3. Single scattering albedos for the gamma distribution of Mie cylinders

with r,z=0.3 um and v =0.05 and monodisperse Rayleigh cylinders with

r =5x 10~* um. The real part of the refractive index is Re N = 1.32 and the
free-space wavelength is A = 0.5 yum.

Mie cylinders Rayleigh cylinders

v, Im N v w,

Im N 1) A y A

1

5.1073 0.973 0.973 1.1077 0.985 0.970
5.1072 0.789 0.783 1.107 0.866 0.764
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where ' is the contribution of the first-order scattering, y* the contribution of all the other ladder
diagrams, and y€ the contribution of all the cyclical diagrams. The sum y' + y" is identical to the
common diffuse backscattering coefficient ¢ and can be found by solving the radiative transfer
equation. An important characteristic of the coherent backscattering peak is the backscattering
enhancement factor {, which is defined as the ratio of the total backscattered intensity to the
incoherent background intensity in exactly the backscattering direction:

=D +y"+2U' +7"] @37
From Egs (36) and (37), we have
,))l + 2,yL 20, _ ,yl .yl
= = = 2 ——
¢ pl 4yt o c (38)

The general vector theory of weak localization of photons in 3-D discrete random media is very
complicated and is still far from being completed. Nevertheless, as was pointed out here for the
case of 2-D media, the vector problem is decomposed into two independent scalar subproblems,
and Egs. (36)—(38) hold for each of these subproblems. Thus, the corresponding backscattering
enhancement factors {, and {, can easily be computed for particular scattering models. The results
of such computations are shown in Table 4. The computations were performed for the gamma
distribution of Mie cylinders with N = 1.32 and N = 1.5 and for conservative Rayleigh scattering
with® x,(0) =1, ,(0) = 1 + cos 26, and w, = w, = 1. It follows from Eqs. (34) and (38) that the
backscattering enhancement factors ¢, and {, obey the limits

lim {(¢,) =lim {(¢py) = 1. (39)
@o— 72 w—0
The first of these limits is demonstrated in Table 4. Also, we see that for the Mie cylinders, the
backscattering enhancement factors are very close to 2 at angles of incidence near 0°. This well
known ““factor of two”’? follows from the fact that for the (nearly) normal incidence and (nearly)
conservative scattering, the contribution of the first-order scattering y' is negligibly small compared
to the total contribution of all orders of scattering ¢ [see Eq. (38)].

Table 4. Backscattering enhancement factors for the gamma distribution of Mie
cylinders with g = 0.3 um, veg = 0.05, and A = 0.5 um and conservative Rayleigh
scattering with x,(6) =1, x,(8) =1+4cos 20, and w, =w, = 1.

Mie cylinders
Rayleigh
tt
% seattering F=1.3 N=1.5
C1 Cg (1 CZ C‘ Ca

90° 1.0000 | 1.0000 1.000 | 1.000 1.000 | 1.000
89° 1.0780 | 1.0947 1.344 | 1.456 1.262 | 1.477
86° 1.2297 | 1.2430 1.672 | 1.792 1.538 | 1.806
83° 1.3365 | 1.3341 1.793 | 1.886 1.660 | 1.894
80° 1.4185 | 1.3993 1.856 | 1.928 1.732 | 1.932
70° 1.5949 | 1.5306 1.935 | 1.974 1.848 | 1.974
60° 1.6936 | 1.6023 1.961 | 1.986 1.897 | 1.985
50° 1.7540 | 1.64TT 1.973 | 1.991 1.923 | 1.990
40° 1.7926 | 1.6786 1.979 | 1.993 1.938 | 1.993
30° 1.8174 | 1.7002 1.983 | 1.995 1.947 | 1.994
20° 1.8330 | 1.T146 1.985 [ 1.995 1.953 | 1.995
10° 1.8415 | 1.7230 1.986 | 1.996 1.956 | 1.995

0° 1.8442 | 1.T7257 1.986 | 1.996 1.957 | 1.995
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Our value ¢, (0) = 1.8442 equals exactly that of Gorodnichev et al,*® who considered enhanced
backscattering of light from 2-D disordered media composed of isotropically scattering centers. In
other words, these authors studied only the first of the two scalar Rayleigh subproblems with
1:(0) = 1. It is interesting to note that from formulas of Ref. 5 and Eq. (38), one can easily derive
an explicit analytical expression for the Rayleigh backscattering enhancement factor {,(¢,). This
expression is

{i(@0) =2 — {(1 + cos @) exp2[ (/2 + @) + f (/2 — @o))/m]} (40)
where
fe) =~ J In(2 sin(y /2)] dy 1)
is the Clausen integral.®! For the particular gase of @,=0,
£1(0) =2 —exp[—4B(2)/n]/2, 42

where B(2) = f(n/2) =0.91597 .. .is the Catalan constant.’!

Note added in proof—Our discussion would be incomplete without citing Refs. 32-34, in which multiple scattering and
localization of light in two-dimensional media was studied.
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